Expression analysis of genes responsible for amino acid biosynthesis in halophilic bacterium Salinibacter ruber.
نویسندگان
چکیده
The degeneracy of the genetic code allows for multiple codons to encode the same amino acid. However, alternative codons and amino acids are used unevenly among genes, a phenomenon termed codon-usage bias. Genes regulating amino acid biosynthesis of Salinibacter ruber, an extremely halophilic bacterium were studied in order to determine the synonymous codon usage patterns. Factors responsible for codon usage variation among the genes were investigated using codon usage indices and multi-variate statistical approach. Overall codon usage data analysis indicated that codons ending in G and/or C were predominant among the genes. Multi-variate statistical analysis showed that there was a single major trend in the codon usage variation among the genes, which had a strong positive correlation (r = 0.93, P < 0.01) with (G + C) content of the genes. Further, correlation analysis indicated that genes with higher expression level and showing a greater degree of codon usage bias were GC-rich and preferred codons with C or G nucleotides at the third position. A set of thirteen codons were identified through Chi-square test as optimal codons, which were preferred in highly expressed genes. It could be concluded that mutational bias had a profound effect on codon usage pattern. In addition, translational selections also operated with a proper balance, making the genes translationally more efficient. The frequency of these codons appeared to be correlated with the level of gene expression and might be a useful indicator in the case of genes (or open-reading-frames) whose expression levels are unknown.
منابع مشابه
An experimental point of view on hydration/solvation in halophilic proteins
Protein-solvent interactions govern the behaviors of proteins isolated from extreme halophiles. In this work, we compared the solvent envelopes of two orthologous tetrameric malate dehydrogenases (MalDHs) from halophilic and non-halophilic bacteria. The crystal structure of the MalDH from the non-halophilic bacterium Chloroflexus aurantiacus (Ca MalDH) solved, de novo, at 1.7 Å resolution exhib...
متن کاملNovel sulfonolipid in the extremely halophilic bacterium Salinibacter ruber.
Salinibacter ruber is an extremely halophilic bacterium, phylogenetically affiliated with the Flavobacterium/Cytophaga branch of the domain Bacteria. Electrospray mass analyses (negative ion) of the total lipid extract of a pure culture of S. ruber shows a characteristic peak at m/z 660 as the most prominent peak in the high-mass range of the spectrum. A novel sulfonolipid, giving rise to the m...
متن کاملDistribution, abundance and diversity of the extremely halophilic bacterium Salinibacter ruber
Since its discovery in 1998, representatives of the extremely halophilic bacterium Salinibacter ruber have been found in many hypersaline environments across the world, including coastal and solar salterns and solar lakes. Here, we review the available information about the distribution, abundance and diversity of this member of the Bacteroidetes.
متن کاملSugar metabolism in the extremely halophilic bacterium Salinibacter ruber.
Growth of Salinibacter ruber, a red, extremely halophilic bacterium phylogenetically affiliated with the Flavobacterium/Cytophaga branch of the domain Bacteria, is stimulated by a small number of sugars (glucose, maltose, starch at 1 g l(-1)). Glucose consumption starts after other substrates have been depleted. Glucose metabolism proceeds via a constitutive, salt-inhibited hexokinase and a con...
متن کاملSalinibacter: an extremely halophilic bacterium with archaeal properties.
The existence of large number of a member of the Bacteroidetes in NaCl-saturated brines in saltern crystallizer ponds was first documented in 1999 based on fluorescence in situ hybridization studies. Isolation of the organism and its description as Salinibacter ruber followed soon. It is a rod-shaped, red-orange pigmented, extreme halophile that grows optimally at 20-30% salt. The genus is dist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Indian journal of biochemistry & biophysics
دوره 50 3 شماره
صفحات -
تاریخ انتشار 2013